Friday, May 11, 2012

A band is a small section of the spectrum of radio communication frequencies, in which channels are usually used or set aside for the same purpose.
Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that the atmosphere is effectively opaque, until it becomes transparent again in the near-infrared and optical window frequency ranges.
To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in bands. For example, broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies.
Each of these bands has a basic bandplan which dictates how it is to be used and shared, to avoid interference and to set protocol for the compatibility of transmitters and receivers.
As a matter of convention, bands are divided at wavelengths of 10n metres, or frequencies of 3×10n hertz. For example, 30 MHz or 10 m divides shortwave (lower and longer) from VHF (shorter and higher). These are the parts of the radio spectrum, and not its frequency allocation.
Band name Abbr ITU band Frequency
and
wavelength in air
Example uses



< 3 Hz
> 100,000 km
Natural and man-made electromagnetic noise
Extremely low frequency ELF 1 3–30 Hz
100,000 km – 10,000 km
Communication with submarines
Super low frequency SLF 2 30–300 Hz
10,000 km – 1000 km
Communication with submarines
Ultra low frequency ULF 3 300–3000 Hz
1000 km – 100 km
Submarine communication, Communication within mines
Very low frequency VLF 4 3–30 kHz
100 km – 10 km
Navigation, time signals, submarine communication, wireless heart rate monitors, geophysics
Low frequency LF 5 30–300 kHz
10 km – 1 km
Navigation, time signals, AM longwave broadcasting (Europe and parts of Asia), RFID, amateur radio
Medium frequency MF 6 300–3000 kHz
1 km – 100 m
AM (medium-wave) broadcasts, amateur radio, avalanche beacons
High frequency HF 7 3–30 MHz
100 m – 10 m
Shortwave broadcasts, citizens' band radio, amateur radio and over-the-horizon aviation communications, RFID, Over-the-horizon radar, Automatic link establishment (ALE) / Near Vertical Incidence Skywave (NVIS) radio communications, Marine and mobile radio telephony
Very high frequency VHF 8 30–300 MHz
10 m – 1 m
FM, television broadcasts and line-of-sight ground-to-aircraft and aircraft-to-aircraft communications. Land Mobile and Maritime Mobile communications, amateur radio, weather radio
Ultra high frequency UHF 9 300–3000 MHz
1 m – 100 mm
Television broadcasts, microwave ovens, microwave devices/communications, radio astronomy, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS and two-way radios such as Land Mobile, FRS and GMRS radios, amateur radio
Super high frequency SHF 10 3–30 GHz
100 mm – 10 mm
radio astronomy, microwave devices/communications, wireless LAN, most modern radars, communications satellites, satellite television broadcasting, DBS, amateur radio
Extremely high frequency EHF 11 30–300 GHz
10 mm – 1 mm
radio astronomy, high-frequency microwave radio relay, microwave remote sensing, amateur radio, directed-energy weapon, millimeter wave scanner
Terahertz or Tremendously high frequency THz or THF 12 300–3,000 GHz
1 mm – 100 μm
Terahertz imaging – a potential replacement for X-rays in some medical applications, ultrafast molecular dynamics, condensed-matter physics, terahertz time-domain spectroscopy, terahertz computing/communications, sub-mm remote sensing, amateur radio

ITU

The ITU radio bands are designations defined in the ITU Radio Regulations. Article 2, provision No. 2.1 states that "the radio spectrum shall be subdivided into nine frequency bands, which shall be designated by progressive whole numbers in accordance with the following table[2]".
The table originated with a recommendation of the IVth CCIR meeting, held in Bucharest in 1937, and was approved by the International Radio Conference held at Atlantic City in 1947. The idea to give each band a number, in which the number is the logarithm of the approximate geometric mean of the upper and lower band limits in Hz, originated with B.C. Fleming-Williams, who suggested it in a letter to the editor of Wireless Engineer in 1942. (For example, the approximate geometric mean of Band 7 is 10 MHz, or 107 Hz.)[3]
Table of ITU Radio Bands
Band Number Symbols Frequency Range Wavelength Range
4 VLF 3 to 30 kHz 10 to 100 km
5 LF 30 to 300 kHz 1 to 10 km
6 MF 300 to 3000 kHz 100 to 1000 m
7 HF 3 to 30 MHz 10 to 100 m
8 VHF 30 to 300 MHz 1 to 10 m
9 UHF 300 to 3000 MHz 10 to 100 cm
10 SHF 3 to 30 GHz 1 to 10 cm
11 EHF 30 to 300 GHz 1 to 10 mm
12
300 to 3000  GHz 0.1 to 1 mm
† This column does not form part of the table in Provision No. 2.1 of the Radio Regulations

IEEE US

Table of IEEE bands[4]
Band Frequency range Origin of name
[citation needed]
HF band 3 to 30 MHz High Frequency
VHF band 30 to 300 MHz Very High Frequency
UHF band 300 to 1000 MHz Ultra High Frequency
L band 1 to 2 GHz Long wave
S band 2 to 4 GHz Short wave
C band 4 to 8 GHz Compromise between S and X
X band 8 to 12 GHz Used in WW II for fire control, X for cross (as in crosshair)
Ku band 12 to 18 GHz Kurz-under
K band 18 to 27 GHz German Kurz (short)
Ka band 27 to 40 GHz Kurz-above
V band 40 to 75 GHz
W band 75 to 110 GHz W follows V in the alphabet
mm band 110 to 300 GHz

EU, NATO, US ECM frequency designations

Band Frequency range
A band 0 to 0.25 GHz
B band 0.25 to 0.5 GHz
C band 0.5 to 1.0 GHz
D band 1 to 2 GHz
E band 2 to 3 GHz
F band 3 to 4 GHz
G band 4 to 6 GHz
H band 6 to 8 GHz
I band 8 to 10 GHz
J band 10 to 20 GHz
K band 20 to 40 GHz
L band 40 to 60 GHz
M band 60 to 100 GHz

Waveguide frequency bands

Band Frequency range [5]
R band 1.70 to 2.60 GHz
D band 2.20 to 3.30 GHz
S band 2.60 to 3.95 GHz
E band 3.30 to 4.90 GHz
G band 3.95 to 5.85 GHz
F band 4.90 to 7.05 GHz
C band 5.85 to 8.20 GHz
H band 7.05 to 10.10 GHz
X band 8.2 to 12.4 GHz
Ku band 12.4 to 18.0 GHz
K band 15.0 to 26.5 GHz
Ka band 26.5 to 40.0 GHz
Q band 33 to 50 GHz
U band 40 to 60 GHz
V band 50 to 75 GHz
W band 75 to 110 GHz
Y band 325 to 500 GHz

By application

Broadcasting

Broadcast frequencies:
Designations for television and FM radio broadcast frequencies vary between countries, see Television channel frequencies and FM broadcast band. Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned to cellular phone and various land mobile communications systems. Even within the allocation still dedicated to television, TV-band devices use channels without local broadcasters.
The Apex band in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting.